

The Business School for the World®

Prof. Anton Ovchinnikov Prof. Spyros Zoumpoulis

DSB Sessions 7-8, February 7, 2020

Advanced Classification; Overfitting and regularization; From .R to Notebooks

Structure of the course

The Business School for the World®

- SESSIONS 1-2 (AO): Data analytics process; from Excel to R
 - Tutorial 1: Getting comfortable with R
- SESSIONS 3-4 (AO): Time Series Models
- SESSIONS 5-6 (AO): Introduction to classification
- Tutorial 2: Midterm R help / classification
- SESSIONS 7-8 (SZ): Advanced Classification; Overfitting and Regularization; From .R to Notebooks
- Tutorial 3: Setup with GitHub and knitting notebooks
- SESSIONS 9-10 (SZ): Dimensionality Reduction; Clustering and Segmentation
- SESSIONS 11-12 (SZ): AI in Business; The Data Science Process; Guest speaker
 - Hands-on help with projects
- SESSIONS 13-14 (AO+SZ): Project presentations

Plan for the day Learning objectives

- Assignment 2
- Advanced Classification: more metrics and methods
- Overfitting & Regularization
- Feature Engineering
- From .R scripts to Notebooks
 - New way/process for doing and communicating analytics with reproducible, publication-quality output

Assignment 2...

The Business School for the World®

Overfitting...

- What happened when in Assignment 2, you made a rpart CART tree with very small cp?
- Fundamental tradeoff of learning with data
 - Models that are too simple: are not accurate on the training set, nor are they accurate on the test set
 - Models that are too complex: are very accurate on the training set, but don't generalize well on the test set...
 - ...exactly because they too closely capture the nuances of the training set, which may not be present in testing.

Overfitting...

Immanuel Kant

Karl Popper

Albert Einstein

Cross-validation

- Need to fine-tune the model so that is strikes a good balance between accuracy and simplicity
- Cross-validation does this fine-tuning
 - Break the data into training data, validation data, test data
 - Train model using training data
 - Test on validation data to fine-tune parameters, and iterate
 - "When happy," test (once) on test data to simulate how model would do in the real world

Regularization

INSEAD The Business School for the World®

- Regularization: set of techniques to reduce overfitting
 - For logistic regression (β are the coefficients):

- $\alpha = 1$: penalize sum of absolute values of coefficients. Lasso regression
- α=0: penalize sum of squares of coefficients. Ridge regression

Package: glmnet

cv.out <- cv.glmnet(as.matrix(estimation_data[,independent_variables]),estimation_data[,dependent_variable],alpha=1, family="binomial")

#family= "binomial" => logistic regression

#alpha=1: Lasso

lambda <- cv.out\$lambda.lse #choose value of λ

log_reg_coefficients <- as.matrix(coef(cv.out,s=lambda)) #extract the estimated coefficients

Overfitting & Regularization

> plot(cv.out)

21

21 17 17 10 6 4 2 1

- λ that minimizes mean crossvalidated error:
- > log(cv.out\$lambda.min) [1] -7.498859
- Largest λ s.t. error is within 1 standard error of the minimum:

> log(cv.out\$lambda.lse)

[1] -4.52178

Emphasizes simplicity (even) more

Back to Assignment 2... Time to make decisions

The Business School for the World[®]

Important classification metric: INSEAD Profit Curve

- Measure business profit if we only select the top cases in terms of the probability of "response"
- For this, we need to define values and costs of correct classifications and misclassifications

	Actual: default	Actual: no default
Predicted: default	\$0	\$0
Predicted: no default	-\$5000	\$1500

Profit = # of 1's correctly predicted * value of capturing a 1 +# of 0's correctly predicted * value of capturing a 0 +# of 1's incorrectly predicted as 0 * cost of missing a 1 +# of 0's incorrectly predicted as 1 * cost of missing a 0

Important classification metric: INSEAD Profit Curve

- Given a classifier, rank instances in the test data from highest predicted probability of belonging to class 1 (= default) to lowest
- Can put the cutoff for giving vs. not giving credit at any rank
- As I move the cutoff, calculate the corresponding profit...

Back to Assignment 2... Feature engineering?

The Business School for the World[®]

Feature Engineering

Your data may have more information than what is contained in your existing variables

- Spend lots of time thinking of ways to combine your variables into new ones!
- "Engineering" good features may be more important than using a better method
- Requires contextual knowledge of the business
 - Can not be outsourced

Feature Engineering

for the World®

Example for credit card default case

(Code on Github repo: INSEADAnalytics/CourseSessions/ ClassificationProcessCreditCardMoreMethods.Rmd):

dependent_variable = 11 independent_variables = c(1:10) # use all the new attributes

Back to Assignment 2...

The Business School for the World®

Sensitivity and Specificity

The Business School for the World®

		True con	dition	
	Total population	Condition positive	Condition negative	
Predicted condition	Predicted condition positive	True positive , Power	False positive, Type I error	
	Predicted condition negative	False negative, Type II error	True negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	

Tree Ensemble Methods

• <u>Main idea</u>: put a set of CARTs together, output a combination (e.g., mode, mean) of the respective outputs the CARTs

Does someone like computer games?

Tree Ensemble Methods

Both **random forests** and **boosted trees** generate multiple random samples from the training set (with replacement), and train a different CART for each sample of the data. This is called bagging.

- Random Forests
 - The samples are completely random. No adaptiveness.
 - Use fully grown CARTs (each with low bias, high variance). Reduce variance by bagging together many uncorrelated trees.
 - Final prediction is the simple average
- Boosted trees
 - Based on small trees: weak learners with high bias, low variance
 - But adaptive: instances modeled poorly by the overall system before, have larger probability of being picked now → higher weight
 - Final prediction is a weighted average

Tree Ensemble Methods

Random Forests

Package: randomForest

model_forest <- randomForest(x=estimation_data[,independent_variables],</pre>

y=estimation_data[,dependent_variable],

importance=TRUE, proximity=TRUE, type="classification")

Boosted trees

Package: xgboost

model_xgboost <- xgboost(data = as.matrix(estimation_data[,independent_variables]),</pre>

label = estimation_data[,dependent_variable],

eta = 0.3, max_depth = 10, nrounds=10, objective = "binary:logistic",

verbose = 0)

#objective= "binary:logistic" => logistic regression for classification

#eta: step size of each boosting step. max.depth: maximum depth of tree.

#nrounds: the max number of iterations

How to then retrieve predicted probabilities (and therefore also classes)?

validation_Probability_classl<-

predict(model,newdata=as.matrix(validation_data[,independent_variables]),

type= "prob")

The Business School for the World®

Support Vector Machines

• <u>Main idea</u>

for the World®

- Training: Divide parameter space in two regions using maximummargin hyperplanes, based on training set.
- Decision: read the label of the region where the new instance falls

Package: e1071

Model_svm <- svm(Retained.in.2012.~., data=training)

#Can choose the kernel, and parameters such as the kernel parameter, the cost of constraint violations, etc. Default is radial kernel.

(A) Process for Classification

The Business School for the World®

- 1. Split the data
- 2. Set up the dependent variable
- 3. Simple Analysis
- 4. Classification and Interpretation
- 5. Validation accuracy
 - Use various classification metrics you know
- 6. Test accuracy

From R to Notebooks

- You traditional approach for "using" analytics has been two-step:
 - "do" analytics (e.g., plot a graph in Excel)
 - "communicate" analytics (e.g., copy-paste the graph into a PowerPoint presentation / Word file report, etc.)
- With coding (and R) there is a better way: "notebooks"
 - "knit" the R markdown (*.Rmd) file T1_rmd_example_template.Rmax
 - This will create a *.html report (a webpage) with the analysis outputs, graphs, text. Can also create a PDF report
 - Main advantage of this approach: ALL IN ONE PLACE
 - When the new data is available (e.g., next quarter's sales numbers come in), creating an updated report will take you... 1 click

• Along with sharing tools (GitHub): reusable, replicable, easy to share, all-in-one-place way of doing and communicating analytics with publication-quality output

The course on GitHub

• The course's GitHub repo:

github.com/InseadDataAnalytics/INSEADAnalytics

- For next time, you get set up with GitHub and copy the repo on your machine
- You find there code really, templates for business solutions for
 - classification material covered today
 - dimensionality reduction and clustering, covered next time
- Course website on GitHub (parallel to Canvas)

inseaddataanalytics.github.io/INSEADAnalytics/home.html

• Issues page:

github.com/InseadDataAnalytics/INSEADAnalytics/issues/

Summary of Sessions 7-8

- Advanced classification:
 - Profit curve, more methods (regularized regression, XGBoost, SVM), a process for classification
- Overfitting and regularization
- Feature engineering
- From R scripts to Notebooks
 - New way/process for doing and communicating analytics with reproducible, publication-quality output

Next...

The Business School for the World[®]

- Tutorial 3: [Tonight Fri, Feb 7]
 - Set up with GitHub repo and knitting
- Sessions 9-10: [Tue, Feb 11]
 - Dimensionality Reduction/Cluster Analysis and Segmentation
 - Please come to class having set up and knitted MarketSegmentationProcessInClass.Rmd
 - BOR work on the market segmentation process for the Boats (A) case
- Assignment 3 (due Feb 14):
 - Complete the market segmentation process for the Boats (A) case
- Proposal for Final Project (due Feb 14)

Final Project (due before last class)

- Develop a data analytics solution to a business problem
 - Relevant business problem, ideally from your past or future workplace
 - Develop a process for how to solve the problem with steps codified in a notebook
 - Show application on a dataset
 - Draw relevant and actionable business insights
- You are expected to share the data you use
- Examples of past projects on <u>GitHub course website</u>
- You will present in class

INSEAD

The Business School for the World®

Europe

Asia

Middle East